1,405 research outputs found

    Phase-change Nanophotonics

    No full text
    Phase-change materials, including metals, semiconductors and liquid crystals, have played a key role in the evolution of active nanophotonic and plasmonic functionalities. They present unique opportunities at the nano- (i.e. subwavelength) scale as a source of optical nonlinearity and a platform for high-contrast, low-energy electro-and all-optical switching / memory devices. I will review Southampton’s work in this field: from the demonstration of exceptionally large (including metamaterial-enhanced) phase-change nonlinearities underpinned by light-induced, surface-mediated structural transitions in confined gallium; through the harnessing of non-volatile optically-induced amorphous/crystalline transitions in chalcogenides (such as Ge:Sb:Te) to realize plasmonic hybrid and all-dielectric switchable and laser re-writable metasurfaces; to the recent revelation that germanium and bismuth-based chalcogenide alloys can themselves present switchable and compositionally-tunable plasmonic properties in the UV-VIS spectral range

    Coherent control of Snell's law at metasurfaces

    No full text
    It was recently demonstrated that the well-known Snell's law must be corrected for phase gradient metasurfaces to account for their spatially varying phase, leading to normal and anomalous transmission and reflection of light on such metasurfaces. Here we show that the efficiency of normal and anomalous transmission and reflection of light can be controlled by the intensity or phase of a second coherent wave. The phenomenon is illustrated using gradient metasurfaces based on V-shaped and rectangular apertures in a metal film. This coherent control effect can be exploited for wave front shaping and signal routing

    Controlling light with light using coherent meta-devices: all-optical transistor, summator and invertor

    Full text link
    Although vast amounts of information are conveyed by photons in optical fibers, the majority of data processing is performed electronically, creating the infamous 'information bottleneck' and consuming energy at an increasingly unsustainable rate. The potential for photonic devices to directly manipulate light remains unfulfilled due largely to a lack of materials with strong, fast optical nonlinearities. In this paper, we show that small-signal amplifier, summator and invertor functions for optical signals may be realized using a four-port device that exploits the coherent interaction of beams on a planar plasmonic metamaterial, assuming no intrinsic nonlinearity. The redistribution of energy among ports can be coherently controlled at the single photon level, with THz bandwidth and without introducing signal distortion, thereby presenting powerful opportunities for novel optical data processing architectures, complexity oracles and the locally coherent networks that are becoming part of the mainstream telecommunications agenda

    Coherent control of light-matter interactions in polarization standing waves

    No full text
    We experimentally demonstrate that standing waves formed by two coherent counter-propagating light waves can take a variety of forms, offering new approaches to the interrogation and control of polarization-sensitive light-matter interactions in ultrathin (subwavelength thickness) media. In contrast to familiar energy standing waves, polarization standing waves have constant electric and magnetic energy densities and a periodically varying polarization state along the wave axis. counterintuitively, anisotropic ultrathin (meta)materials can be made sensitive or insensitive to such polarization variations by adjusting their azimuthal angle

    Ultrafast all-optical switching via coherent modulation of metamaterial absorption

    Full text link
    We report on the demonstration of a femtosecond all-optical modulator providing, without nonlinearity and therefore at arbitrarily low intensity, ultrafast light-by-light control. The device engages the coherent interaction of optical waves on a metamaterial nanostructure only 30 nm thick to efficiently control absorption of near-infrared (750-1040 nm) femtosecond pulses, providing switching contrast ratios approaching 3:1 with a modulation bandwidth in excess of 2 THz. The functional paradigm illustrated here opens the path to a family of novel meta-devices for ultra-fast optical data processing in coherent networks.Comment: 5 pages, 4 figure

    Intrinsic optical bistability in nanomechanical metamaterials at milliwatt power levels

    No full text
    We report the first demonstration of optical bistability in nanomechanical metamaterials - arrays of plasmonic or dielectric resonators on flexible nano-membranes. Bistability results from the nonlinearity of the near-field forces induced by light

    Photonic Metamaterial Analogue of a Continuous Time Crystal

    Full text link
    Time crystals are an eagerly sought phase of matter with broken time-translation symmetry. Quantum time crystals with discretely broken time-translation symmetry have been demonstrated in trapped ions, atoms and spins while continuously broken time-translation symmetry has been observed in an atomic condensate inside an optical cavity. Here we report that a classical metamaterial nanostructure, a two-dimensional array of plasmonic metamolecules supported on flexible nanowires, can be driven to a state possessing all of the key features of a continuous time crystal: continuous coherent illumination by light resonant with the metamolecules' plasmonic mode triggers a spontaneous phase transition to a superradiant-like state of transmissivity oscillations, resulting from many-body interactions among the metamolecules, characterized by long-range order in space and time. The phenomenon is of interest to the study of dynamic classical many-body states in the strongly correlated regime and applications in all-optical modulation, frequency conversion and timing.Comment: 10 pages, 6 figure

    All-dielectric free-electron-driven holographic light sources

    Full text link
    It has recently been shown that holographically nanostructured surfaces can be employed to control the wavefront of (predominantly plasmonic) optical-frequency light emission generated by the injection of medium-energy electrons into a gold surface. Here we apply the concept to manipulation of the spatial distribution of transition radiation emission from high-refractive-index dielectric/semiconductor target materials, finding that concomitant incoherent luminescent emission at the same wavelength is unperturbed by holographic surface-relief structures, and thereby deriving a means of discriminating between the two emission components.Comment: 5 pages, 3 figure

    Fibre-optic metadevice for all-optical signal modulation based on coherent absorption

    Full text link
    Recently, coherent control of the optical response of thin films of matter in standing waves has attracted considerable attention, ranging from applications in excitation-selective spectroscopy and nonlinear optics to demonstrations of all-optical image processing. Here we show that integration of metamaterial and optical fibre technologies allows the use of coherently controlled absorption in a fully fiberized and packaged switching metadevice. With this metadevice, that controls light with light in a nanoscale plasmonic metamaterial film on an optical fibre tip, we provide proof-of-principle demonstrations of logical functions XOR, NOT and AND that are performed within a coherent fully fiberized network at wavelengths between 1530 nm and 1565 nm. The metadevice performance has been tested with optical signals equivalent to a bitrate of up to 40 Gbit/s and sub-milliwatt power levels. Since coherent absorption can operate at the single photon level and also with 100 THz bandwidth, we argue that the demonstrated all-optical switch concept has potential applications in coherent and quantum information networks.Comment: 9 pages, 6 figure
    • …
    corecore